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ABSTRACT

NO 2 was photolyzed with 2288A radiation at 300 and 423 0 K

in the presence of H20, CO, and in some cases excess He. The photolysis

produces O( 1D) atoms which react with H2O to give HO radicals

3

O( D) + H20 - 2HO 3

or are deactivated by CO to O( P) atoms

O( D) + CO-- O( P) + CO 5

The ratio k /k is temperature dependent, being 0. 33 at 300°K and

0. 60 at 423 K. From these two points the Arrhenius expression is

estimated to be k /k 3 = 2.6 exp(-1200/RT) where R is in calories/mole - K.

The OH radical is either removed by NO 2

OH + NO2(+M) - HNO 3 (+M) 1

or reacts with CO

OH + CO - H + CO
2

2

The ratio k 2 /k
c

is 0. 019 at 3000 K and 0. 027 at 4230 K, and the ratio

k 2 /k° is 1. 65 x 10 5 M at 300 0 K and 2.84 x 10-5 M at 423 K with H 2 0

as the chaperone gas, where k
m

= kl in the high-pressure limit and

k°[M] = k1 in the low-pressure limit. When combined with the value

o 
=
4. 18 ex p(-1 -1 k 9

of k 2 = 4.2 x 108 exp(-l100/RT) M_ sec , k= 6.3 x 109 exp(-340/RT)

- -1 o 12 -2 -1
M1 sec~ and k° = 4. 0 x 10 M sec independent of temperature for

H 2 0 as the chaperone gas; He is about 1/8 as efficient as H 2 0.

i
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IN TR ODU C TION

The reaction of HO. with NO 2

OH + NO2 + (M) - HNO
3

+ (M) (1)

may play an important role in stratospheric ozone balance due to

conversion of nitrogen oxides, present naturally and introduced as

pollutants by SST aircraft, to nitric acid which eventually appears as

nitrate in rain water. 1 Reaction (1) is probably also important in polluted

air where it may be an important chain terminating step of NO to NO
2

conversion chains carried by the OH radical. 2

Reaction (1) was first observed by Wilson and Donovan. Mulcahr -

and Smith, in a mass spectrometric study of the H + NO 2 system, have

obtained an approximate rate coefficient at 300 K of 2 x 108 M - sec

Berces et al., studying the photolysis of HNO
3

vapor, have obtained

the relative rate coefficient between reaction (1).and the. HO-F:HNO3

reaction5 as well as the relative rate coefficient between the HO + HNO 3

reaction and reaction (2) 6

OH + CO - CO
Z

+H (2)

From their studies kl/k
2

= 1. 2 M
-
1 where reaction(1) was found to be

third order and Kr was the chaperone gas. Because of the importance of

reaction (1) to atmospheric chemistry and the lack of considerable kinetic

data regarding this reaction, we have undertaken a detailed kinetic study.

The OH radials were generated by the photolysis of NO 2 with

2288A radiation in the presence of CO and H20 mixtures. The O( 1D)

atom produced by the NO 2 photolysis reacts with H20 to give OH radicals.
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The OH radicals react with either NO
2

in accordance with reaction (1)

or with CO via reaction (2). From the measured quantum yield of CO
2

formation, ~{CO 2 }, as a function of reactant pressures, inert gas

pressure, and temperature, the rate coefficient ratio kl/k 2 could be

obtained as a function of total pressure and temperature. Reaction (2)

has been extensively studied and the rate coefficient k
2

is probably good

to 30-50 %. Thus an absolute value for kl could be computed.

In addition to obtaining values for kl/k
2

it was possible with the

same system to obtain relative quenching coefficients for the quenching

of O( D) by H 2 0 and CO. These rate constants are of great importance

in the chemistry of planetary atmospheres. Confirmed reliable rate

constants for these quenching reactions have not been available.
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EXPERIMENTAL

A conventional high-vacuum line utilizing Teflon stopcocks with

Viton "O" rings was used. Pressures were measured with a dibutylphthalate

manometer, a NRC alphatron gauge and a Veeco thermocouple gauge.

The reaction vessel was a cylindrical quartz cell 10 cm long by 5 cm in

diameter. The cell was enclosed in a wire wound aluminum block

furnace, the temperature of which was controlled to ± 1°C by.a

Cole-Parmer Proportio Null Regulator Series 1300.

The NO 2 was prepared in situ on the vacuum line from pure NO

and 02. It was purified periodically (when blue N203 could be seen

in the solid NO 2 ) by the addition of excess 02 and degassing at -1960C.

The NO was obtained from Matheson and was purified by distillation from

liquid Argon. The CO, 02 and He (Matheson) were purified by passage

over traps maintained at -196 0 C. The H2O was taken from the tap and

small amounts degassed at -960 C prior to use.

Irradiation was from a Phillips Cd resonance lamp TYP 93107 E.

The radiation was passed through a 5 cm long cell filled with chlorine at

1 atm. The effective radiation was essentially at 2288 A with small

contributions at 2265 and 2144A.

Actinometry was done by irradiating NO 2 (at comparable pressures

to those in an actual run) in the presence of excess N20. The reaction

sequence is

NO 2 - NO + O( D) I
2 a

O(1D) + N20 - N
2

+ 02 a

O( D) + N2O - 2NO b
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From a measurement of the nitrogen production rate, the absorbed

1
intensity that leads to O( D) production,:I , could be determined,: -since

a

*k,/kh for translationally cold O( D) atoms is accurately known to be

1.0 in this system. 8 The relative quenching coefficient for O( D) by

N20 and NO 2 is known to be 1.6; 9 consequently the ratio [N 2 O] /[NO 2 ]

was always maintained-> 25 to insure that < 6% of the O( 1D) atoms

react with the NO 2 , and this correction was neglected. I
a

was not

determined for every pressure of NO 2 , but was calculated by assuming

that I a was proportional to [NO2 ]. This assumption is valid, because

only a small fraction of the incident radiation was absorbed (< 5%).

Irradiation of N
2

0 in the absence of NO 2 , but for otherwise identical

conditions did not give N2; thus direct photolysis of N20 did not occur.

After irradiation, the condensable: (at -196 0 C) gases were

collected and analyzed for CO
2

by gas chromatography using a thermistor

detector and a 24 ft. by 1/4" column packed with Porapak Q operating at

250C. For the actinometry runs:an: aliquot of the:.N2 was collected and

analyzed by gas chromatography using a 10 ft. long by 1/4" in diameter

column packed with 5 A molecular sieves,

At 25 C a background pressure of CO 2 of 1. 5± was always present

independent of conditions and time. This quantity was always substracted

from the CO 2 yield. At 150 C the CO 2 background was -2. 0 and the

appropriate correction was always made. At 25 0 C and 150 0 C this

correction amounted to always < 10% and usually was of the order of

1-2%. At temperatures >1500 C a dark reaction to give CO
2

becomes

important and experiments at temperatures > 150 0 C were not possible.
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RESULTS

The results of NO
2

photolysis in the presence of mixtures of CO

and H 2 O are presented.in Table I. The CO pressure was varied from 1.32

to 235 torr at 300°K and from 3.:56 torr to 348 torr at 423 K. The initial

NO 2 pressure, [NO2 ]o, was changed from 0. 39 torr to 2.78 torr at

300 0 K and from 0. 54 to 1. 55 torr at 4230 K. Considerable NO 2 was

consumed during the runs, and the average NO
2

pressure, [NO 2] , was

lower than [NO 2 ]o . The ratio of [CO] /[NO2 ]° ranged from 0. 61 to

224 at 300 K and from 3.23 to 295 at 423 K. The [H20] /[NO 2 ]
o

ratio

ranged from 6.42 to 36 at 300 0 K and from 7. 8 to 20 at 423 0 K. The

[CO] /[H
2
0] ratio was varied from 0. 065 to 17. 4 at 300 0 K and from 0. 193

to 22 at 423 K. The total pressure was altered by changing the H20

pressure at lower CO pressures and by adding'helium at'higher CO

pressures. At 300'K the H 2 0 pressure ranged from 5. 40 to 20. 2 torr

and the helium pressure was varied from 59 to 1080 torr at about a

constant H 2 0 pressure of 12-15 torr. At 4230K the H 2 0 pressure ranged

from 4.26 to 18.5 torr and the He pressure ranged from 495 to 1040 torr

with about 12-16 torr of H2O also present. At higher CO pressures the

CO also makes a small contribution to the total pressure. The contri-

bution of NO
2

to the total pressure was neglected.

The data can be summarized as follows. The- quantum yield of

CO Z formation, ({fCOz}, is approximately proportional to [CO]/[NO 2 ]

under all conditions, is independent of [H 2 0] at low [CO] /[H2O0] and

constant total pressure; but decreases as [CO] /[H20] becomes large.

D{CO
2

} also drops if He is added or the total pressure is raised, but

this effect is less pronounced at higher pressures. At 4230 K, D{CO2}

is generally higher than at 300 K for otherwise comparable conditions.
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DISCUSSION

At low [CO] /[H 2 0] ratios the facts can be accounted.for by the

following scheme:

NO
2

-- NO + O( D) Ia

O( D) + H
2

0 - 20H (3)

OH + NO 2 - HONO
2

(la)

HONO' + M - HONO 2 +M (lb)

OH + CO - CO 2 +H (2)

H + NO
2

- OH + NO (4)

At higher [CO]/[H 2 0] ratios the quenching of O( 1 D) by CO becomes

important

O( D) + CO CO + O( P) (5)

The photolysis of NO
2

at 2288 A is known to give O( D) atoms with a

quantum efficiency of 0. 3 - 0. 4. 89 Any O(3P) produced is removed by

reaction with NO
2

. Reaction (3) is the dominant (>90%), if not exclusive

reactionfor O(1D) + H 0.10 Reaction (1) is presumed.to give nitric

acid, though this has never been demonstrated. Reaction (1) is written

in detail to account for the pressure dependence of P{CO 2 }. HONO2 is

an initially formed energy rich.intermediate which may revert to starting

material or be stabilized by collision with a chaperone M, where [M] l

a [He] + b [H 2 0] + c [CO] and a, b, and c represent the relative collision

efficiencies. Reactions (2) and (4) are well known. 7,11 Since reaction
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-11 3 11
(4) is very fast (k 4 = 4. 8 x 10 cm /sec ) it is the only reaction

consuming H atoms. Reaction (5) is the dominant reaction for the

quenching of O(1D) by CO. 
1 2

13

Determination of kl/k2: Based on the above scheme the following

rate law for CO 2 formation may be obtained:

2k2 [CO], k3 [H2 0]
2 k l NO2 ] k3[Hz20]+k [CO]

where

kl klb[M]
k k la ]

1 kl a + klb[M]

The limiting high and low pressure rate constants are:

M -wco k - k
-01 la

-la

In order to test the above rate law and to obtain kc and k 0 it is

convenient to rearrange equation I to

2k 2k
{co } [NO]/[CO] = k2 + 2k 1I

2 2 kO k0 [ i

where

{CO2 }2 {Co2 I} (1 + k[o] )3 [H~ 2/0
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A plot <I{cO 2 } [NO2 ]/[CO] vs. 1/[M] should be linear with the

intercept = 2k 2 /ke and. the slope = 2k 2 /kW. In order to calculate

({CO 2 } , k /k 3 must be known. k /k
3

was determined from experiments

at high [CO] /[H 2 0] ratios, as shownbelow, to be 0. 33 and 0. 60, respectively

at 300 and 423 K. The efficiency of M in step lb will depend on the gas.

In general [M] = a [He] + b [H 2 0] + c [CO] (the contribution due to NO
2

is neglected since its pressure is always very low). If M is taken

simply as the total pressure, then a plot of equation II gives a smooth

but nonlinear curve for He + H20 mixtures and a straight line in the

absence of He. A straight line plot is obtained over the whole range of

He + H
2

0 mixtures and over the complete range of H
2

0 pressures in the

absence of He if we take a:b:c = 1:8:1. 5. This plot is shown in Figure 1.

Appreciable deviation of the plot from a straight:life'i-s observed when

b < 6 or > 10. The value of 1.5 for c is not determined from our data.

(since c [CO] < a [He] + b [H 2 O] the plot is very insensitive to c), :but

taken as the relative quenching efficiency of a diatomic gas compared to

a monatomic gas observed in other systems.

The plot in Figure 1 does not clearly demonstrate the dependence

of C {CO2 } on the [CO] /[NO 2 ] ratio. This dependence is clearly shown

by a log-log plot in Figure 2 of · {C02 } vs. [CO]/[NO2 ] at 500 - 1100

torr He and 300 0 K. In this pressure range of He, ' {CO 2 } is virtually

independent of [M] as is demonstrated in Figure 1. Figure 2 also shows

a plot of the same quantities in the absence of He and an approximately

constant H
2

0 pressure (13-20 torr) but varying CO pressure ([CO] <

0.5 [H 2 0]). Both plots in Figure 2 are linear with unit slopes, and thus

conform to the prediction of equation I and show that b [H 2 0] >> c [CO]..
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The plots of Figures 1 and 2 clearly establish the validity of the rate law

for CO
2

formation. The intercepts in Figure 1 are 0.038 and 0.055 at

300 K and 423 K respectively; thus k2/k
°

= 0.019 at 3000K and k2/k =

0.027 at 423 0 K. The slopes of the plots in Figure 1 are 4.9 and 11.9 torr

at 300 and 423 K, respectively; consequently k 2 /k H0 = 1. 65 x 10 5 Mat

300 K and k2/k = 2.84 x 105 M at 423 K for H 0 as a chaperone

gas. With He as the chaperone, the values for k2/k° are 8 times larger,

but still the value at 300°K is 6300 times smaller than that found by

Berces et al. 5 6

TheArrhenius expression may be obtained from the results at

the two temperatures to be k2/k
C
O = 6. 7 x 10 exp(-760/RT) and

k2/k°H2O = 10.5 x 10 5 exp(-1l00/RT) M. Absolute values for k ° and km

may be calculated from the known value of k2, which has been the subject

of numerous determinations. Baulch et al. 7 give k 2 = 4.2 x 108

exp(-ll100/RT) M 1 sec 1 based on a critical evaluation of all the

determinations. It is very unlikelythat the values for k 2 given by Baulch

et al. are off by more than a factor of 2 and are probably good to 20 - 30%0

in the temperature range of interest here. The results are k = 6.3 x 109

exp(-340/RT) M I sec and k = 4.0 x 10 M sec independent
H 2O

2 o 11 -2 -1of temperature. For He as the third body k = 5 x 10 M sec
He

It is interesting to compare our results for kl to the semiquantitative

value for kl obtained by Mulcahy and Smith4 at 300 K and in the pressure

range of 0.2 - 1 torr (principally Ar or He). These authors were unable

to decide whether reaction 1 was heterogeneous or homogeneous under

their experimental conditions, but assuming the reaction is homogeneous

a second order rate constant f:-2 x 1'0 Mi . -s e c las ob'tairied.' Thisse ... a oaie. Thi
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value is a factor of 14 less than ours. However, according to our results

reaction (l) will be third order in the pressure range used by Mulcahy

and Smith. If their value is recomputed on a third order basis k ° Ar, He=

6 x 1012 M- 2 dec- This value for k ° is a factor of 12 larger than our

value for He as the third body. The present results definitely exclude

the possibility that under our conditions reaction (1) could be heterogeneous

for 2 reasons: 1) Pressures as high as 1100 torr were employed; thus

diffusion could not compete with reaction (5), which has a time constant

of 410
-

4 sec, 2) The pressure dependence is in the wrong direction of

that expected if reaction (1) was heterogeneous.

The values ofk12 -2 -The values of k = 4.0 x 10 M sec is very large, but not
H20

unreasonable for the complexity of the HONO
z

molecule as demonstrated

by the following crude computation. The lifetime of the HONO Z complex

may be computed from =k A AE E n) where A is a1a E

frequency factor, E is the total energy of the complex, E ° is the activa-

tion energy for decomposition of the complex and n is the effective

, 13 -1 
number of oscillators, Taking A 10 sec , n= 5 and E =49 kcalmole

(the bond dissociation energy D {HO - N0i}), T is calculated to be "1 x

10 - 8 sec at 300 K. The lifetime computed from k and k is the same,

assuming that klb 1 x 10 M- -lsec for H20 as the chaperone,

Determinationof[k5 ik In order to determine k /k 3 expression I

may be rearranged to

{C 2 }- 1 = 1 + O] III

where

{c02 } 2= Zk [co
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A plot of D" {(C02 -1 vs. [CO] /[H2 0] should be linear with a slope:of

k5/k
3
. This expression is useful only when k5 [ C O] > k 3 [ H 2 O], or at

relatively high [CO] /[H2 0] ratios. In order to obtain k 5 /k 3 , kl/k
2

must be known and vice versa. To get around this problem initially

experiments were done at low [CO]/[H 2 0] ratios such that {G0(CO 2 )=

(CO 2 }). A plot of (CO 2 }
)

[NO 2 ] /[CO) vs. 1/[M] (equation II) gave

an initial value of k 2 /k . This initial value of k 2 /k was used to obtain

an approximate value of k5/k3 via equation III. Using this approximate

value for k /k3, {(CO 2 was caluclated and accurate values of k2/k

and k2/k° obtained. Finally, using the accurate value of k
2

/k ° the

final value of k 5 /k 3 was obtained. Experiments at high [CO] /[H 2 0]

ratios were done also at high He pressures so that reaction (1)

was in the second order region. A plot of " {(C02}- 1 vs. [CO]/[H 2 0]

is shown in Figure 3. The fit at 300 K is good, but at 423 K some

scatter is present. From the plots in Figure 3, k5/k
3

is found to be:

0. 33 and 0. 60 at 300 0 K and 423 0 K, respectively. From these two

points the Arrhenius expression can be estimated to be k 5 /k 3 = 2. 64

exp(-1240/RT). This small though definitely real temperature effect

implies that the deactivation of O( D) by CO proceeds via an excited CO 2

state which probably is the B 2 state. The activation energy arises

from a potential barrier for crossing to products. It is interesting to

correlate the present results with our earlier study of O(3P) + CO

14recombination. In that study it was concluded that recombination

proceeds via the B2 state with a potential barrier 1. 2 kcal/mole above

the IB 2 state. Consequently the reverse process should have an

activation energy of 1.2 kcal/mole in agreement with the activation

energy observed here for O( D) deactivation by CO.
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Several determinations of k 5 and k
3

relative to k
6

have been

made, where reaction 6 is

1 3
O( D) + CO 2 - O(3 P) + C 2 (6)

These values may be combined to give k /k
3

. Table II lists the relevant:

rate constant ratios. Combination of our room temperature value of

0. 33 for k5/k 3 with the value of 2.76 for k 3 /k 6 gives k 5 /k 6 = 0.91. This

18
value is in reasonable agreement with that of Yamazaki, but

somewhat higher than that found by others (except the value of Clerc

15and Reiffstecklwhich appears to be e.
and Reifffsteck, which appears to be erroneouls).
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1
Table II: Relative Rate Coefficients for O( D) Deactivation

Reference

Clerc and Reiffsteck
1

5

Young et al. 16

Paraskevopoulos and
,13

Cvetanovic

17
DeMo r e

Yamazaki 18

.,19Scott and Cvetanovic

Lissi and Heicklen2 0

Ratio

k5 /k 6

k5 /k 6

k5/k 6

Value

55

0.22

0. 59

0.41

0O 79

2. 76

3. 00

k5/k6

k5/k 6

k3/k6

k3/k6
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Plot of '{C02 } [NO2 ] /[CO] vs. [M]-1 in the photolysis of

NO
2

at 2288 A in the presence of CO, H 2 0, and He at 300

and 423 0 K.

Log-log plot of f {CO 2 } vs. [CO] /[NO2] in the photolysis

of NO 2 at 2288 A in the presence of CO and H20 at 3000 K

both in the absence and presence of 500 - 1100 torr of He.

In the absence of He, the H
2

0 pressure is between 13 and

20 torr, and [CO] < 0.5 [H0] .

Plot of "{GCO2 } 1 vs. [CO] /[HzO ] in the photolysis of N02

at 2288 A in the presence of CO, H 2 0, and He at 300 and

423 0 K.
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